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Abstract

The fluidelastic instability behaviour of flexible tubes subjected to internal single-phase (liquid or gas) flows is now

reasonably well understood. Although many piping systems operate in two-phase flows, so far very little work has been

done to study their dynamic behaviour under such flows. This paper presents the results of a series of experiments to

study the fluidelastic instability behaviour of flexible tubes subjected to two-phase internal flow. Several flexible tubes of

different diameters, lengths and flexural rigidities were tested over a broad range of flow velocities and void fractions in

an air–water loop to simulate two-phase flows. Well-defined fluidelastic instabilities were observed in two-phase flows.

The existing theory to formulate the fluidelastic behaviour under internal flow was developed further to take into

account two-phase flow. The agreement between the experimental results and the modified theory is remarkably good.

However, it depends on using an appropriate model to formulate the characteristics of the two-phase flows.

r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The fluidelastic instability behaviour of flexible tubes subjected to internal single-phase (liquid or gas) flow is now

reasonably well understood as outlined by Paidoussis (1998). Although many piping systems operate in two-phase

flows, so far very little work has been done to study their dynamic behaviour under such flows. The fluidelastic

behaviour of flexible cylinders subjected to two-phase annular axial flows was investigated in the mid-1970s for the

development of nuclear fuels for boiling water reactors (BWR) (Pettigrew and Paidoussis, 1975; Paı̈doussis and

Pettigrew, 1979). Although well-defined fluidelastic instabilities were observed in single-phase annular flow, instabilities

under two-phase conditions remained elusive in spite of much effort to observe them. This somewhat unexpected

behaviour led to a variety of explanations such as the existence of nonlinearities due to the proximity of the annular

flow boundary, the excessive turbulence of air–water mixtures inhibiting the initiation of instability, and the relatively

larger damping associated with two-phase flows. Thus, to the knowledge of the authors, the possibility of fluidelastic

instability in axial two-phase flows has not yet been established.

A number of studies were undertaken in the 1980s and early 1990s (Pettigrew et al., 1989; Pettigrew and Taylor, 1994;

Axisa et al., 1985; Nakamura et al., 1995) to investigate the vibration behaviour of tube bundles in two-phase cross-

flow. This work was largely related to nuclear steam generators. Fluidelastic instabilities were generally observed for
e front matter r 2004 Elsevier Ltd. All rights reserved.

uidstructs.2004.06.003

ing author.

ess: michel.pettigrew@polymtl.ca (M.J. Pettigrew).

www.elsevier.com/locate/atmosenv


ARTICLE IN PRESS

Nomenclature

A tube internal cross-sectional area

Ag area occupied by the gas in the tube internal cross-section

Al area occupied by the liquid in the tube internal cross-section

EI tube flexural rigidity

F frequency (Hz)

g gravitational acceleration

K slip ratio defined by K ¼ Ug=Ul

k viscous damping coefficient

L length of tube

M mass of fluid per unit length

m mass of tube per unit length

p tube internal pressure

Qg volumetric gas flow rate

Ql volumetric liquid flow rate

T axial tension in tube

t time

U average flow velocity

Ug,a average gas (or air) velocity

Ul,w average liquid (or water) velocity

u dimensionless flow velocity defined by u ¼ ðM=EIÞ1=2UL

uc dimensionless critical flow velocity

uw dimensionless critical water velocity defined by uw ¼ ðMw=EIÞ1=2UwL

ua dimensionless critical air velocity defined by ua ¼ ðMa=EIÞ1=2UaL

x longitudinal coordinate

y lateral deflection of the tube

a void fraction

b dimensionless mass ratio M=ðM þ mÞ

g dimensionless parameter defined by the tube length and the gravitational acceleration g ¼ ðM

þmÞgL3=EI

eg volumetric quality

Z dimensionless lateral deflection of the tube defined by Z ¼ y=L

k dimensionless viscous damping coefficient defined by k ¼ ½ðM þ mÞ=EI �1=2k=L

lr eigenvalues of cantilever for mode r

m hysteretic structural damping coefficient

x dimensionless longitudinal coordinate defined by x ¼ x=L

rg gas volumetric mass

rl liquid volumetric mass

rH homogeneous volumetric mass

t dimensionless time defined by t ¼ fEI=½ðM þ mÞ�L4g1=2t

fr eigenfunctions of cantilever for mode r

O circular frequency (rad/s)

o dimensionless frequency defined by o ¼ ½ðM þ m=EIÞ�1=2OL2

oc dimensionless critical frequency

Other symbols are defined in the text.
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straight tube bundles in air–water cross-flow. Particularly well-defined instabilities were seen in the much less turbulent

two-phase Freon cross-flows (Pettigrew et al., 1994, 2002; Feenstra et al., 1995, 2002). On the other hand, well-defined

instabilities were only observed in liquid and in very low void fraction air–water cross-flows for U-tube bundles

(Boucher and Taylor, 1996). Why instabilities were not observed at the higher void fractions may be explained by the

overwhelming response to turbulence or by nonlinear effects due to the closeness of neighbouring tubes in the relatively

more flexible U-tube bundle. Thus, a better understanding of fluidelastic instability in two-phase flows is generally

required. Hopefully, this paper is a step in that direction from the point of view of axial flow.
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This paper presents the results of a series of experiments to study the fluidelastic instability behaviour of cantilevered

flexible tubes subjected to two-phase internal flow. Several flexible tubes of different diameters, lengths and flexural

rigidities were tested over a broad range of flow velocities and void fractions in an air–water loop to simulate two-phase

flows. Well-defined fluidelastic instabilities were observed.

The existing theory to formulate the fluidelastic behaviour under internal flow was developed further to take into

account two-phase flow. Several models are available to formulate the characteristics of two-phase flows. Although

these models were developed from a thermal-hydraulics point of view, they were evaluated from the perspective of their

appropriateness to represent the fluidelastic instability parameters. A modified two-phase model emerged that provided

remarkably good agreement between the experimental results and the modified theory.

The experimental results, the development of the modified theory, the evaluation of the two-phase flow models and a

comparison between experimental results and theory are presented in this paper.
2. Fluidelastic instability theory

2.1. Single-phase flow

Paidoussis (1970,1998) has developed the force equilibrium equations to formulate fluidelastic instability for

cantilever tubes subjected to internal flows:
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The terms of Eq. (1) represents respectively: flexural force, pressure and tension, centrifugal force, Coriolis force,

inertia force, structural damping force and viscous damping force. O is the circular frequency of the tube.

He then explained how to transform this differential equation into a system of equations that can be solved. The

solution process is simplified by the transformation of the variables into dimensionless form, via
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The system of equations is expressed as a summation of modes in Eq. (3), that is

X1
r¼1

f½ð1 þ miÞl4
r þ koi 	 o2�drj þ ½u2 	 g�crj þ gdrj þ ½gþ 2b1=2uoi�brjgar ¼ 0; j ¼ 1; 2; 3 . . . ; ð3Þ

b, c and d are coefficients defined and derived by Paidoussis (1998) and d is the Kronecker function. The form of Eq. (3)

is similar to the classical mode summation response equation expressed as

Zðx; tÞ ¼
X1
r¼1

arfrðxÞe
iot ð4Þ

Since all cylinder characteristics are known, the dimensionless flow velocity, u, and the dimensionless frequency, o,

are the only unknowns in Eq. (3). The sign of the imaginary part of the frequency term defines the stability of the

response. To find the critical frequency of the tube at instability, the imaginary part of the frequency term is set to zero.

Thus, the two unknowns are effectively real values. The solution of the system of equations is obtained by allowing the

determinant of the coefficients of ar to be equal to zero. This determinant has a real and an imaginary part. Equating

each of those parts to zero yields a system of two equations and two unknowns, which can be solved.

2.2. Two-phase flow

To consider two-phase flow, the flow related terms in the above equations, in particular the mass, M, and the velocity,

U, must be defined differently. To find appropriate formulation for those terms it is necessary to respect force

equilibrium conditions. Considering that the different phases may have different flow velocities, it would be incorrect to

use an averaged velocity to formulate both Coriolis and centrifugal forces. Thus, each of the phases is considered to
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create its own Coriolis and centrifugal forces. It is assumed that the forces contributed by each phase may be added in

the following equation of instability. The resulting modified fluidelastic instability equation to consider two-phase flow

is expressed as follows:
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The subscript k represents each phase. For a two-phase flow, k takes the values 1 and 2. Mk and Uk are the masses

and the velocities of each phase.

This new equation is also expressed in dimensionless form as Eq. (6) to facilitate the solution. The total mass of the

flow is simply the addition of the masses of each phase. As a result, the definition of two dimensionless variables

changes slightly as expressed in Eq. (7). Each phase has its own dimensionless velocity. Thus, each term is expressed as a

function of the mass and velocity of each phase instead of the averaged flow characteristics. Each phase also has its own

mass ratio; thus,
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The possibility of solving this equation is apparently compromised. Considering a two-phase flow, three unknowns

appear in this equation while only the same two equations are available. The unknowns are the dimensionless velocity

of each phase and the dimensionless frequency. The number of unknowns can be reduced to two by including a

relationship between the two-phase velocities. The two-phase flow theory will provide this relationship.
3. Two-phase flow theory in vertical tubes

3.1. Definitions and flow patterns

It is not the intention here to provide a comprehensive review of the two-phase flow theory. Only the essential

elements needed in the fluidelastic instability formulation will be presented. Three fundamental definitions are needed

for this purpose: void fraction, volumetric quality and slip ratio (Collier and Thome, 1994; Lahey and Moody, 1993;

Chisholm, 1983; Hewitt, 1978; Wallis, 1969).

The void fraction, a, is the ratio between the volume occupied by the gas, Vg; and the total volume, V, of the flow.

Because the element of length, dx, is constant, the void fraction is also the ratio of the area occupied by the gas, Ag, over

the total flow area, Ag+Al:

a ¼
Vg

V
¼

Vg

Vg þ Vl

¼
Agdx

Agdx þ Aldx
¼

Ag

Ag þ Al

: ð8Þ

The volumetric quality, eg, is the ratio of the gas volumetric flow rate, Qg, over the total volumetric flow rate; i.e.,

�g ¼
Qg

Qg þ Ql

: ð9Þ

The slip ratio, K, is the velocity ratio between, the gas and the liquid phase,

K ¼
Ug

Ul

: ð10Þ

These three quantities are linked by the following expression:
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�g

¼
1 	 a
a

� �
1

K
: ð11Þ
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Fig. 1. Downward two-phase flow patterns:(a) bubbly flow, (b) slug (or plug) flow, (c) annular flow, (d) bubbly annular flow, (e) churn

flow and (f) dispersed annular flow.
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Different flow patterns or regime are possible in two-phase flow, depending on void fraction, flow rate, flow direction

and flow path geometry. For downward flow, six possible flow patterns are described in the literature. All those flow

patterns were observed in the laboratory, and photographs were taken. A comparison between those photographs and

classical descriptions is presented in Fig. 1 for the different flow patterns.

3.2. Two-phase flow models

The homogenous model is the simplest two-phase flow model. This model proposes a slip ratio equal to one. Then,

void fraction becomes equivalent to volumetric quality. With this model, the fluidelastic instability equation can be

described with only one phase with average mass, M, and velocity, U. The average density may be calculated as follows:

rH ¼ �grg þ ð1 	 �gÞrl : ð12Þ

Considering equal velocities for the two phases is probably not realistic. Chisholm proposes a model that describes

the slip ratio as a function of volumetric quality and fluid properties (Chisholm, 1983). For high void fractions,

Chisholm proposes a maximum value for the slip ratio, KC:

KC ¼
rl

rH

� �1=2

¼
1

½1 	 �gðrg=rlÞ�
1=2

ð13Þ

with a maximum of KC ¼ ðrl=rgÞ
1=4 .

Chisholm demonstrated that this model is in very good agreement with experiments (Chisholm, 1983). However, this

model was derived for upward flow where the slip ratio is always higher than one. This suggests a gas velocity always

higher than the liquid velocity. Some observations of downward flow patterns indicate that the liquid might possibly

have a higher velocity than the gas. This is particularly obvious for slug flow. The shape of the top of the bubble gives

the impression that the bubble is going upward. But because it is going downward, the velocity of the liquid around the

bubble is definitely higher than the velocity of the bubble itself. Thus, the slip ratio should be less than one for bubble or
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Fig. 2. The new (KN) and Chisholm’s (KC) slip ratios for different void fractions.
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slug downward flow. Because those two patterns are observed only at low void fraction, the slip ratio will be considered

less than one for void fraction less than 50%. Chisholm gets relatively good agreement with experiments, even with

downward flow and especially for high void fraction. It is thus reasonable to use a slip ratio close to Chisholm’s ratio

for void fraction higher than 50%. A simple expression to describe a new model for the slip ratio of downward flow is

proposed in Eq. (14). This new slip ratio, KN, is equivalent to the area ratio occupied by each of the phases:

KN ¼
Ag

Al

¼
a

1 	 a
¼

�g

1 	 �g

� �1=2

: ð14Þ

Also, KN appears consistent with the observed flow patterns and is not very different from Chisholm’s slip ratio as

shown in Fig. 2.
4. Experiments

4.1. Test-section

The choice of tubes for the test-section was critical. Flexibility was the first criterion. Tubes had to be flexible enough

to allow a visual observation of the fluidelastic instability phenomenon at reasonably low flow velocities. Because flow

patterns had to be observed, transparency was a second criterion for the test-section. Diameters, lengths and linear

masses of different test tubes had to be varied enough to provide validity of the results over a reasonable range of

parameters. Flexible plastic tubes of Tygon R-3606 were chosen. A special procedure was developed to make sure the

tubes were nominally straight. Table 1 outlines the characteristics of the different tubes used in the experiments.

4.2. Flow loop

In the experiments, two-phase flows were simulated with air–water mixtures. Although industrial piping systems are

often subjected to vapour–liquid flows such as steam–water, air–water was used here because it is simple and reasonably

realistic. It allows operating at ambient temperature and pressure. Water from two small pumps and service air were

brought together and homogenised in a fine mesh air–water mixer. The pressure was controlled with a pressure

regulator working in the range of 0–207 kPa. Pressure and volumetric flow rates were measured before the mixer. The

pressure of the two-phase flow was also taken just before the test-section. Water returned to the tank after flowing out

of the tube. The important parts of this experimental assembly are shown in Fig. 3.

4.3. Test procedure

The volumetric flow rates for each of the phases and the critical frequency were measured at the threshold of

instability. An appropriate way to take flow rate measurements in single-phase flow is described by Paidoussis, (1970).

A similar method was used to initiate the instability in two-phase flow and to take the measurements. The volumetric
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Table 1

Test-section characteristics

Inside diameter (mm) Linear mass (g/m) Length (m)

Tube A 6.35 47.4 0.7580

Tube B 9.25 65.7 0.3305

0.3365

0.5470

0.8230

1.1680

Tube C 12.7 87.8 0.3985

0.5940

0.6930

0.7580

0.9985

1.1225

Tube D 12.7 186.0 0.2960

0.4110

0.5600

Tube E 12.7 618.0 0.9670

1.5990

1.4020

Fig. 3. Experimental assembly.
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flow rate of water was set to a specific value. The volumetric flow rate of the air was gradually increased. Between each

increase of the air-flow rate, enough time was allowed for the instability to develop. When the instability is reached,

volumetric flow rate of air and water were measured. The volumetric flow rate of air was calculated with reference to the

pressure in the test-section. The instability frequency was measured with an optical displacement sensor placed near the

clamped end of the cantilevered tube.
5. Results

5.1. Damping coefficients and rigidity

The tube characteristics, which were needed to solve the fluidelastic instability equation (Eq. (6)), were the damping

coefficients, m and k, and the flexural rigidity, EI. They were deduced from the measured frequency, Re(O1), and
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logarithmic decrement, d1, for the first mode of free vibration of the tubes by the method described by Paidoussis

(1998). The dimensionless parameter g is found from its relation with the quantity g/[Re(O1)
2L]. EI is calculated from g.

Damping coefficients are found from the following relations: ½wReðo1Þ þ m�=d1 ¼ Reðo1Þ
2=½pðl1Þ

4
� and k ¼ wðl1Þ

4: The

hypothesis of wReðo1Þ ¼ m is used for small Im(o1). This is explained in details in Paidoussis (1998). Damping values of

m ¼ 0:1 and of k ¼ 0:12 were found to be representative for all the tubes. Flexural rigidities, EI, were different for each

tube as shown in Table 2.
5.2. Single-phase flow results

Although not the main topic of this paper, tests were done in single-phase flow to demonstrate the validity of the

experimental procedure and of the damping model. Tests in single-phase flow were done for different lengths of Tube C

in both water and air. The experimental results are presented in Table 3 and are compared to the theory in Figs. 4 and 5.

As can be observed, the agreement is remarkably good. The validity of the experimental procedure and of the damping

model is thus demonstrated.
5.3. Two-phase flow results

Three different two-phase flow models were considered. These models were compared to find out, which gave the best

fit to the fluidelastic instability theory. Tube B with a length of 0.547 m was chosen to make this comparison. The results

are presented in Figs. 6 and 7. The homogenous model, as expected, is by far the worst. The agreement between the

theory and the experimental results is much better for the Chisholm’s model. However, the agreement for low void

fractions can be improved. The best fit is found with the new model which has more physical basis for low void fraction.

The experimental results for all the other tubes are compared to the theory only for the new model for conciseness and

expediency. Figs. 8 and 9 present the comparisons between the theory and results for Tube C of length 0.758 m, D of

lengths 0.411 and 0.56 m and E of lengths 0.967 and 1.402 m.
6. Discussion

In general, the agreement between the theory and the experimental results is very good. Many tube sizes have been

used in the experiments to demonstrate the validity of the model over a wide range of parameters. The theory combined

with the new two-phase flow model has been validated for different mass ratio b from 0 to 60% and for different values

of g from 30 to 160. However, the agreement for Tube E is not quite as good, especially for higher void fraction. As it

was the heaviest tube used in the experiments, the critical flow rate to reach the instability was a lot higher. Thus, the

application of the proposed model beyond the range of parameters studied here should be done with great care. In

reality, two-phase flows are very complicated and can not be described by a single relation between the phase velocities.

Increasing flow rate or increasing void fraction may change the flow pattern. Phase interactions may be quite different

for different flow patterns. Phase velocity ratio may also change with an increase in flow rate. A better model would be

one that would consider changes in phase velocity ratio not only with changes in void fraction, but also with changes in

total volumetric flow rate. Another way to consider flow pattern influence would be to define (MU)eq and (MU2)eq

related to flow considerations. Even if in these experiments bubbly flow was observed most of the time, other flow

patterns may have appeared and changed the way each phase interact with the tube.

It is known that two-phase flow often results in significant damping. However, no information or measurements of

such damping due to internal two-phase flow was available. Although, in the relatively small diameters of the tubes

tested, relative motion between the liquid and gas phases may be limited. Furthermore, the instability phenomenon may

not be sensitive to damping as indicated in Figs. 4 and 5. In this study, two-phase damping was assumed negligible.

However, further studies should consider this aspect.

Although instability modes were not directly measured, some visual observations should be discussed. Fluidelastic

instability modes in single-phase flows have been well described by Paidoussis (1970,1998). The mode observed at

instability is dependent on the mass ratio and the parameter g. The same tube undergoes instability in the first mode in

air and in the fourth mode in water. In two-phase flows, the mass ratio is varied between that of air and that of water.

For the same tube, instabilities in the first to fourth mode can be observed in two-phase flows. Observation of the first,

the third and the fourth modes is shown in Fig. 10. The instability modes are unstationary, which means that nodes are

moving along the tube. This motion is the results of an infinite addition of normal modes, as described by the
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Table 2

Flexural rigidities of test-sections

EI (Nm2)

Tube B 0.003

Tube C 0.007

Tube D 0.018

Tube E 0.129

Table 3

Experimental results in single-phase flow

L (m) Water flow Air flow

b=0.5907 b=0.0018

Uc (m/s) F (Hz) Uc (m/s) F (Hz)

0.3985 7.05 5.23 70.61 2.67

0.5940 5.61 3.63 56.49 1.55

0.6930 5.55 3.56 52.03 1.33

0.7580 5.47 3.32 51.10 1.22

0.9985 5.50 3.30 49.42 1.02

1.1225 5.41 3.50 49.80 0.96
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Fig. 4. Dimensionless critical velocity in single-phase flow for Tube C: (a) water flow and (b) air flow.
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Fig. 7. Dimensionless critical frequency in two-phase flow for Tube B, L ¼ 0:547 m: (a) homogeneous model; (b) Chisholm’s model

and (c) new model.

0

2

4

6

8

10

12

14

16

0.0 0.20 0.40 0.60 0.80 1.00

Void fraction

u
c

Theory

Exp. results

(a)

0

2

4

6

8

10

12

14

16

0.0 0.2 0.4 0.6 0.8 1.0
Void fraction

u
c

uw Theory
ua Theory
uw Exp.
ua Exp.

(b)

0

2

4

6

8

10

12

14

16

0.0 0.2 0.4 0.6 0.8 1.0

Void fraction

u
c uw Theory

ua Theory

uw Exp.

ua Exp.

(c)

Fig. 6. Dimensionless critical velocity in two-phase flow for Tube B, L ¼ 0:547 m: (a) homogeneous model; (b) Chisholm’s model and

(c) new model.
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Fig. 8. Dimensionless critical velocity with new two-phase flow model: (a) Tube C, L ¼ 0:758 m; (b) Tube D, L ¼ 0:411 m; (c) Tube D,

L ¼ 0:56 m; (d) Tube E, L ¼ 0:967 m and (e) Tube E, L ¼ 1:402 m:
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fluidelastic instability response formulation:

Zðx; tÞ ¼
X1
r¼1

arfrðxÞe
iot:

Two other observations are worthy of mention. First, turbulence is stronger in two-phase flow than in single-phase

flow for the same flow rate. This difference in turbulence levels results in much larger vibrations in two-phase flows than

in single-phase flow. Tube A because of its very light mass experienced very large vibration amplitude due to two-phase

flow turbulence. Those vibrations made it difficult for the observer to identify the threshold of instability. The

differences between theory and experimental results for Tube A were thus mostly due to observation errors rather than

to an inappropriate model. Consequently, those results are not reported here.

The second observation is about pressure drop at instability. Instability of the cylinder increased the pressure loss in

the test section. This was deduced from the observation of a cycle between instability and stability. Critical flow
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Fig. 9. Dimensionless critical frequency with new two-phase flow model: (a) Tube C, L ¼ 0:758 m; (b) Tube D, L ¼ 0:411 m; (c) Tube
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velocities were reached to initiate the instability. The instability increased the pressure drop, which reduced the water

velocity below the critical velocity, which prevented instability. Water velocity was more affected than air velocity

because water was provided to the loop by a small pump while air was provided by a relatively stable and constant

pressure compressed air service. As the pressure loss decreased, the water velocity increased again beyond the critical

velocity and instability resumed.
7. Conclusion

The fluidelastic instability behaviour of flexible tubes subjected to internal two-phase flows was investigated. Very

well defined fluidelastic instabilities were observed over a broad range of parameters. The existing theory to formulate

fluidelastic instability was extended to take into account two-phase flows. The agreement between the experimental
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Fig. 10. Superposed digital photographs of fluidelastic instability modes: (a) 1st mode; (b) 3rd mode and (c) 4th mode.
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results and the modified theory is remarkably good when an appropriate two-phase flow model is used to formulate the

characteristics of two-phase flows. Such a model was developed based on the observed two-phase flow patterns during

the experiments.
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